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Abstract
Cancer is a major public health concern in many parts

of the world. The genesis of cancer is multi-causal with
some well known causal factors for some sites of cancer.
However, some cancer causes are not clear up to nowa-
days. There are substantial geographic variations in mor-
tality of some sites of cancer in different regions of the
world that could be in relation with some environmental
factors and trace elements such as arsenic, chromium and
cadmium. The review summarizes the recent studies on
that matter. 
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Streszczenie 
W wielu cz´Êciach Êwiata nowotwory sà g∏ównym za-

gadnieniem zdrowia publicznego. Powstawanie nowo-
tworu jest zale˝ne od wielu przyczyn , niektóre z nich sà
znane, jednak przyczyny innych nie sà dotàd wyjaÊnione.
Istotne zró˝nicowanie geograficzne odnoÊnie Êmiertel-
noÊci nowotworów narzàdowych w ró˝nych regionach
Êwiata mo˝e byç zwiàzane z czynnikami Êrodowiskowy-
mi i ze Êladowymi metalami jak arsen, chrom i kadm.
Niniejszy przeglàd przedstawia aktualne badania na ten
temat. 

S∏owa kluczowe: cancer, trace elements, arsenic,
chromium, cadmium 

Introduction
Cancer is a major public health concern in many

parts of the world accounting more than 10 million
new cancer cases each year and being the cause of
approximately 12% of all death. The lung, breast,
colorectum, and stomach are the most common
cancers worldwide [1]. Prostate cancer is the fifth
most common cancer overall and the second most
common among men, bladder cancer, ranks ninth
in terms of incidence, and is more common in devel-
oped countries [1].

The genesis of cancer is multi-causal with some

well known causal factors for some sites of cancer
although some cancer causes are not clear up to
nowadays. A substantial geographic variations in
cancer mortality in some regions of the world make
us think about environmental factors of the disease.
Among many environmental factors trace elements
are of particular interest. Trace elements refer to
chemical elements present or required in small
quantities. Trace elements are found naturally in the
environment and human exposure derives from a
variety of sources, including air, drinking water, and
food (Table I) [3].
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Arsenic
Arsenic (As) is ubiquitous in the environment

due to both anthropogenic and natural processes
[10, 11]. The major sources of human exposure to
As may be through food, water, air and soil in that
dietary intake is the major exposure route [12]. As
species from drinking water are mainly found in the
form of inorganic arsenicals, whereas organoarsenic
compounds (e.g., arsenobetaine and arsenosugars)
predominate in seafood [13, 14]. A high level of As
in groundwater (up to 2–5000 µg/l) is found in areas
of Argentina, Bangladesh, Bolivia, Chile, China
(Xinjiang, Shanxi), India (West Bengal), Mexico,
Mongolia, Taiwan, Thailand, the USA (Arizona,
California, Nevada) and Vietnam. The most signif-
icant exposures, in terms of levels and populations,
occur around the Gulf of Bengal, in South America
and in Taiwan. In Europe, intermediate levels (not
higher than 200 µg/l) are found in areas of Hungary
and Romania in the Danube basin, as well as in
Spain, Greece and Germany [15]. World Health
Organization lowered the Maximum Contami-
nation Level for As in drinking water from 0.05 to
0.01 mg/l [16], although dietary exposure to organic
arsenicals was formerly neglected due to their rela-
tively nontoxic nature. However, more and more
studies have focused on As exposure through
seafood rather than drinking water because some
seafood contains high As concentrations [17, 18]. 

The toxicity of As in humans varies in its chem-
ical form. It has been recognized that inorganic As
is more toxic than its organic forms [13]. Inorganic
trivalent arsenical, which reacts directly with pro-
tein-bound sulfhydryls, is considered more toxic
than the inorganic pentavalent form [17]. Inorganic
As is proposed to be metabolized to monomethylar-
sonic acid and dimethylarsinic acid of lower toxici-
ty [18, 19]. 

The International Agency for Research on
Cancer recognized arsenic and arsenic compounds
as carcinogenic to humans (Group I) [4]. There is
strong evidence of an increased risk of bladder,
skin and lung cancers following consumption of
water with high As contamination [20, 21, 22, 23].
Very limited data are available on the risk of other
neoplasms at low or intermediate exposure levels.
[15]. Although some authors support the possibili-
ty of an increased risk of specific lung cancer his-
tological types at lower levels of As exposure and
recommend large-scale population-based studies
[24]. The evidence for an increased risk of other
cancers, such as those of the liver, colon and kid-
ney, are weaker but suggestive of a systemic effect
[15]. Most of the available studies have been con-
ducted in areas with elevated As content (above 200
µg/l). It has been determined median cumulative
cancer incidence ratios 2.6721016 and 3.8321016

for children and adults, indicating a low cancer risk
for local residents exposed to As after ingestion of
seafood [25].

Epidemiologic data from regions of the world
with very high levels of As in drinking water
(§150 µg/l) show a strong association between As
exposure and risk of several internal cancers. A
causal interpretation of the data is mainly based
on the strength and consistency of study findings.
At lower levels of exposure (*100 µg/l), in the
absence of unambiguous human data, extrapola-
tion from the high exposure studies has been used
to estimate risk. Misclassification of exposure usu-
ally results in depressing observed levels of risk,
and studies conducted in populations with expo-
sures below 100 µg/l have been limited by the chal-
lenge of estimating past exposures, a critically
important aspect of studying relative small
increases in risk [26].

Table I. Average exposure to trace elements from environmental sources

Trace Exposure by source

element Air Watera Diet

Arsenic 1–2000 ng [4, 5] *1 ng–7200 µg, depending on 50–200 µg (3.5 µg of
geographic location [4, 7, 8] inorganic arsenic) [2, 4]

Chromium 0.07–157 ng (200 ng in 0.8–16 µg [9] 50–200 µg [9]
industrial areas ) [9]

Cadmium 1–40 ng [6, 7] 0.01–0.2 µg (50 µg in heavily 3–160 µg, approximately
polluted areas) [6, 7] 1–3 µg is absorbed [6, 7]

Sources [2, 4, 5, 6, 7, 8, 9] 
a Assuming an intake of 2 l water/day
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Chromium 
Chromium (Cr) is the 21st most abundant ele-

ment in the Earth’s crust [27]. While several valence
states of Cr are possible, only the trivalent (Cr3&)
and hexavalent (Cr6&) forms have significant envi-
ronmental stability. Most of the naturally occurring
Cr is in the Cr3& form as chromite ore [28], while
Cr6& tends to occur as a result of anthropogenic
uses. These include pigments, metal finishing
(including Cr plating) and wood preservatives [29].
Although the highest levels of exposure occur in
industrial settings, lesser levels of exposure are also
common in the general population. Cr is also con-
stituent of tobacco smoke and has been suspected
to play a role in tobacco-induced carcinogenesis
[30]. 

Cr is a human carcinogen primarily absorbed by
inhalation exposure in occupational settings. The
International Agency for Research on Cancer
declared in 1980 that Cr and some of its compounds
are carcinogenic and, in 1987, concluded that Cr6&

is a human carcinogen but that Cr3& was not yet
classifiable [31]. Adverse health effects of Cr have
long been known and include skin ulceration, per-
forated nasal septum, nasal bleeding, and conjunc-
tivitis. Recent studies updating chromium worker
cohorts demonstrated an excess lung cancer risk
from exposure to Cr6& [32, 33]. 

Some epidemiological studies found elevated
standardized mortality ratios (SMR) for prostate,
lymphoma, Hodgkin’s, leukemia, stomach, renal,
bladder, and genital cancer. This index for cancers of
the brain varied from 2.5 to 8.44 in a number of
studies [34]. According to the reported elevation of
brain cancers, and knowledge that Cr gets into the
central nervous system, there should also be concern
about the possibility that Cr6& may be neurotoxic
[35]. Although Cr6& is not generally considered to
be a neurotoxin, perhaps this should be reconsidered
since Cr gains entry into the central nervous system
and may be a carcinogenic at this site [36].

The meta-analyses of 49 epidemiologic studies
mostly relating exposure to Cr6& compounds
declared no excess mortality from all causes com-
bined among chrome-exposed persons. A minimal
excess of cancer overall, was due primarily to an
excess of lung cancer but SMR was 112 among the
better-quality, smoking-controlled studies. The
overall SMR for stomach cancer was 113 but it was
82 among the studies that were controlled for eco-
nomic status. Findings were unremarkable for the
six other cancers evaluated: prostate, kidney, and
central nervous system cancer and leukemia,
Hodgkin’s disease and other lymphatohematopoiet-
ic cancer. Finally, the authors concluded that Cr6&

is a weak cause of lung cancer and is not a cause of

any of the other seven forms of cancer evaluated
[37]. It has been stated that the relationship between
Cr6& and lung cancer is weak because of the great
capacity of the lung to reduce Cr6& to the non-car-
cinogenic Cr3&. Only very heavy exposure to Cr6&

could overwhelm the lung’s reducing capacity and
produce cancer [38]. Crump et al. [39] also inferred
that Cr6& was only weakly carcinogenic for the
lung. However, most of the evidence regarding lung
cancer risks related to these agents comes from
cohort studies in a narrow range of industries in
which exposures have been relatively high. In the
majority of these studies, it has been difficult to rule
out confounding by smoking or other occupational
co-exposures as a possible explanation for the asso-
ciations [40]. 

Although lung cancer has been established as a
consequence of Cr6& exposure in smokers and non-
smokers, some cancers of other tissues of the gas-
trointestinal and central nervous systems have also
been noted [36]. It has been shown that Cr6& expo-
sure, by either inhalation or ingestion, can have sys-
temic effects that are distant from the site of expo-
sure. Since Cr6& is isostructural with sulfate and
phosphate at physiological pH, it can be carried
throughout the body and even into the brain. Thus,
if exposure is in sufficient amounts, the levels of Cr
maybe elevated in many different organs.
Depending on the genetic susceptibility of an indi-
vidual, this could pose significant risk to cancer
induction in any organ. All cells and organs possess
the ability to take up hexavalent chromate, and any
cell has the capacity to reduce the Cr6& intracellu-
larly to Cr3&, which reacts with protein to produce
toxicity and with DNA to potentially cause cancer.
The ability of the stomach to reduce Cr6& is limit-
ed, and even at relatively low doses, chromate
escapes reduction and enters the body, as illustrated
by hairless mouse study [41]. Experimental study
showed that the induction of malignant skin can-
cers in hairless mice exposed to 0.5–5.0 ppm Cr6& in
drinking water was dose dependent and highly sta-
tistically significant [41]. In spite of Cr being a
human carcinogen primarily by inhalation expo-
sure, the experimental system representing an
important new animal model developed for chro-
mate-induced cancers by ingestion of drinking
water developed, suggested that chromate could
likely be considered a human carcinogen by inges-
tion as well [36]. 

Cadmium
Cadmium (Cd) is a toxic, nonessential, and

bioaccumulating heavy metal widely used in indus-
try. Cd affects human health both through occupa-
tional and environmental exposures. In general
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population the primary sources of Cd are cigarette
smoke, food, water, and ambient air particularly in
urban areas and in the vicinity of industrial settings
[42]. About 10% of inhaled Cd is deposited in lung
tissues and 30–40% is absorbed into blood.
Generally, Cd uptake in the gastrointestinal tract is
5–20% and depends on speciation of Cd, interac-
tions between components in the diet affecting the
bioavailability of Cd and the person’s nutritional
status. Approximately, 75% of the total dietary Cd
intake is from vegetable food with the highest con-
tribution from cereals [43]. Owing to long half-life
of Cd in the human body, it accumulates in the kid-
neys. The urinary excretion of Cd is proportional to
the body burden and used as a dose of lifetime
exposure to Cd, whereas concentration in blood
represents recent exposure [44].

Cd exerts multiple toxic effects, and has been
classified as a human carcinogen by the Inter-
national Agency for Research on Cancer [45]. Cd
carcinogenesis can be explained by several mecha-
nisms: (1) aberrant gene expression, (2) inhibition of
DNA damage repair, (3) induction of oxidative
stress, and (4) inhibition of apoptosis. The most
important among them is oxidative stress because
of its involvement in Cd-induced aberrant gene
expression, inhibition of DNA damage repair, and
apoptosis [46].

Although Cd is known as a human lung car-
cinogen [45], there is evidence that it may be relat-
ed to other cancers such as human prostate cancer
[47, 48], renal cell carcinoma [49, 50], and breast
cancer [51, 52]. The human mammary gland is a
controversial target site for Cd. Epidemiological
study revealed twice the higher risk of breast can-
cer in women with creatinine-adjusted urine Cd
more than 0.58 µg/g compare to those with Cd less
than 0.26 µg/g [52]. Experimental studies suggest
several pathways to explain association of Cd with
human breast cancer. There is evidence that Cd
may have estrogenicity [51]. According to some
authors, the bivalent metal cations Cd belongs to a
new class of potent environmental estrogens,
referred to as metalloestrogens. The studies in vivo
and in vitro show that Cd acts like an estradiol acti-
vating estrogen receptor (ER) a through a high-
affinity interaction with the hormone binding
domain of the receptor [53]. There is evidence that
the effects of cadmium are mediated by the ER
independent of estradiol [51]. Antila et al. [54]
defined high content of Cd (3.2–86.9 µg/g) in
breast samples from breast cancer patients, but the
mean cadmium level did not differ from that of
healthy controls. However, three other studies
found significant difference between Cd in breast
cancer and healthy breast tissue [55, 56, 57]. 

Multiple studies have linked occupational expo-
sure to cadmium with pulmonary cancer, as well as
prostate, renal, liver, hematopoietic system, urinary
bladder, pancreatic, and stomach cancers [58, 59,
60, 61, 62]. Some authors concluded that pancreat-
ic cancer in the East Nile Delta region is signifi-
cantly associated with high levels of serum Cd and
farming [63]. However, the data are nor consistent.
In contrast to laboratory studies, epidemiological
studies do not convincingly implicate Cd as a cause
of prostate cancer [64].

In conclusion, arsenic and its compounds,
chromium (VI) compounds, cadmium and cadmi-
um compounds are recognized human carcinogens.
However, in spite of an association between chron-
ic arsenic ingestion and internal cancers, epidemio-
logic studies have not produced convincing evidence
of risks related to drinking-water concentrations of
less than 100 µg As /liter. Compounds of chromium
(VI) and cadmium are human carcinogens primari-
ly by inhalation inducing lung cancer. However, due
to inconsistency of the data the relationships with
the other sites of cancer are not proved finally.
Relatively small study size and misclassification of
exposure usually results in depressing observed lev-
els of risk and contributes to the variability of find-
ings in most studies and makes interpretation of
results challenging. 
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